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Kinds of knowledge
OpenAI’s GPT-4 [1] and other LLMs, such as Meta’s LlaMA [2], show impressive conversational
capabilities. These systems can generate coherent, novel, and often surprisingly sophisticated
responses to questions or prompts posed directly in natural language. This has led artificial intel-
ligence (AI) researchers who develop these systemsi, along with cognitive scientists and authors
of articles in news media, to ask whether LLMs have knowledge.

Here, we explore this possibility. We suggest we are in a ‘Kuhnian moment’: a conceptual revo-
lution in what we take knowledge to involve, with implications for how we think intelligence could
arise. Accordingly, we ask: in what sense can GPT-4 (and similar models) be said to have knowl-
edge? The answer to this question extends far beyond the capabilities of a particular AI chatbot,
with implications for cognitive science, neuroscience, philosophy, and AI.

We ground our answer using a core concept from cognitive science, world models (see
Glossary). World models are structure-preserving, behaviorally efficacious representations of
the entities and processes in the real world [3], including objects with 3D shapes and physical
properties [4], scenes with topological relations and navigable surfaces [5], and agents with be-
liefs and desires [6]. Human thought often relies on these types of world models [7,8] to perceive
[4,9], effectively reason [10,11], plan [12], and talk about the world [13].

In particular, for a wide range of ordinary contexts, a knowledgeable human agent draws on their
world model, exploiting a structural match between their mental representations and the state of
the world and, using language, reliably generating contentful answers to prompts that are approxi-
mately truth preserving and relevant. We describe such world-model-based knowledge as worldly
knowledge and the content of the matched representations that support it as worldly content.
When a subject has worldly knowledge of a proposition, this is, at least in part, in virtue of the subject
using their world model to grasp the worldly content of the proposition. For example, when the sub-
ject knows that balancing a ball on a box is easier than balancing a box on a ball, they use their world
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Glossary
Causal generative models: a
probabilistic model that embeds a world
model to specify joint distribution of
latents and observables. In this way,
inference, prediction, and reasoning
queries can be defined rigorously and
precisely (via the calculus of probability),
so as to formalize processes in
perception and cognition.
Compression: in information theory,
compression is to efficiently represent
data (e.g., in fewer bits, less space).
Fine-tuning with reinforcement
learning: typically comprises the use of
human feedback about the quality or
appropriateness of its generated
responses to fine-tune an LLM. If an
LLM’s response to a prompt is deemed
high quality by a human judge, the LLM
receives positive feedback, encouraging
it to generate similar sorts of responses
in the future. This technique alleviates the
need for paired datasets of input
prompts and output responses needed
for supervised training.
Fine-tuning with supervised learn-
ing: using a paired dataset of input
prompts and output responses to
further train an LLM to follow instructions
or generate aligned and humanlike
responses. Such data may come from
humans or from bigger models to train
smaller models. Typically, such labeled
datasets are much smaller in scale than
the dataset used to pretrain LLMs.
Instrumental knowledge: knowledge
acquired through the successful use of
instruments that perform certain tasks.
We suggest that next-word generation
in LLMs leads to spontaneous
inferences about task structure from
natural language input and conditioning
of the activations within the model
according to this structure.
Machine language translation: a
branch of computer science (subfield of
natural language processing) that
develops methods and algorithms to
train machine-learning algorithms to
translate across languages.
Mathematical representation
theory: in mathematics, representations
specify how (sometimes seemingly
entirely) different mathematical objects or
structures relate to each other.
Representation theory is a branch of
mathematics that specifies these
relationships using linear algebra and
transformations of vector spaces.
Structure-preserving mapping: a
mapping between two systems is
model of howobjectsmove and react to external forces to grasp the content that balancing a ball on a
box is easier than balancing a box on a ball. We take such knowledge to be the target of philosophical
analyses of how an individual knows the content of a proposition p, where to know that p, ‘an agent
must not only have the mental state of believing that p, but various further independent conditions
must also be met: p must be true, the agent’s belief in p must be justified or well-founded, and so
forth’ ([14], p. 281). We also take such knowledge to be well studied in scientific contexts [15–20]
and to include much of our ordinary factual and relational knowledge about the world.

Recent AI developments in LLMs seem to involve a different kind of knowledge. Such systems are
based on deep neural networks pretrained on Internet-scale data to autocomplete the next word
(or token, more accurately) given preceding context, which are then further fine-tuned with rein-
forcement and supervised learning techniques for human-aligned and humanlike responses
(e.g., [21]). When using these tools, LLMs can generate sufficiently successful responses to an ap-
propriately wide range of prompts, giving answers that are often approximately truth preserving
and relevant. We describe such answers as demonstrating instrumental knowledge.

Instrumental knowledge is knowledge acquired through the successful use of instruments that
perform certain tasks. A person who can successfully use an instrument like a television remote
gains a small amount of instrumental knowledge, as evidenced by the limited range of tasks the
remote can be used to perform. (The person gains this instrumental knowledge through task per-
formance, not through knowing in any deeper sense how the television remote works, making
their knowledge merely ‘instrumental’.) Here, we treat the process of next-word generation as
an instrument (cf. [22] for a treatment of language as an instrument). We take an LLM’s wide-
ranging and generative ability to successfully respond to prompts, using next-word generation,
as demonstrating instrumental knowledge. An LLM that can successfully use the instrument of
next-word generation gains a significant amount of instrumental knowledge meeting a high stan-
dard of reliability, as evidenced by the range of tasks it can use this language tool to successfully
perform. Note that the LLM gains its instrumental knowledge through task performance, not
through knowing, in any deeper sense, how its responses are about the world.

So, we can grant that LLMs exhibit knowledge, as, like people, they can be said to have instru-
mental knowledge. However, how is such instrumental knowledge related to the sort of human
knowledge that is based on world models and to what degree, if any, might an LLM’s knowledge
incorporate worldly knowledge?

World models in cognition
We start with an exposition of world models as realizers of worldly knowledge. Our definition of
world models is inspired by Gallistel and King’s discussion of mental representations [3] and is
partially grounded in mathematical representation theory. A world model is a way of
representing entities in the real world and their relations with two critical requirements.

First, a worldmodel must be structure preserving, such that changes in the real-world entities and
their relations should map onto similar sorts of changes in their counterpart representations in the
world model. Gallistel and King use the simple example of measuring a child’s height bymarking it
on a wall with a pencil, where the markings and the process of making these markings constitute
a structure-preserving representation of the child’s height. Notice that a structure-preserving
representation is, by definition, content preserving.

Second, a world model must be behaviorally efficacious, meaning that it should enable accurate
planning and high-reward actions back in the real world. In the example above, the markings are
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structure preserving (i.e., homomorphic)
if how the symbols within each system
relate to each other is preserved. A basic
example of homomorphism is linearly
mappable systems.
Task structure: a broad category of
information that facilitates task
performance, including noticing the
relevant cues and relations in a given
prompt that are most important, in this
Opinion, for next-word generation.
Worldly content: content constituted
by entities and processes in the real
world, including objects with 3D shapes
and physical properties, scenes with
spatial structure and navigable surfaces,
and agents.
Worldly knowledge: S has worldly
knowledge that P only if P has worldly
content and S uses their world model to
grasp this content.
World model: structure-preserving,
behaviorally efficacious representations
of the entities, relations, and processes
in the real world. These representations
capture, at an abstract level, their
counterpart real-world processes (which
typically involve causal relations), in
algorithmically efficient forms, to support
relevant behaviors.
Unsupervised multitask learning:
learning of tasks in the absence of any
supervision. OpenAI’s GPT-2 was
described as an unsupervised multitask
learner as a result of learning to
accurately predict the next word on
Internet-scale language data.
behaviorally efficacious as they can guide decisions about clothing size or comparisons of the
heights of a child across time. Notice that behavioral efficacy suggests that world models need
not be veridical replicas of what is out there; abstractions that can be implemented in algorithmi-
cally efficient approximations of their counterpart real world processes will do. Examples of such
structure-preserving, behaviorally efficacious representations are provided in Figure I in Box 1.

Multiple lines of research provide support for world models as a basis of cognition. Probabilistic
models in cognitive science suggest concrete candidates for how these structure-preserving, be-
haviorally efficacious representations may be implemented in the mind (see Figure I in Box 1). Em-
bedding a candidate representation within probabilistic models, often referred to as causal
generative models, allows researchers, in a given domain to formally and rigorously specify
queries of inference, learning, prediction, and planning and to solve them using Bayesian infer-
ence. These models are typically evaluated against alternative models in how consistent they
are with human performance, with respect to average accuracy, stimulus-driven variability in ac-
curacy, response times, similarity judgments, and other sorts of behavioral ratings.

Beyond evaluating these models in comparison with behavioral performance, recent neuroscien-
tific studies explore the realism of the hypothesized world models in brain activity. A formal review
of this literature is beyond the scope of this Opinion, but we provide brief pointers in Box 1. We
now turn to the specification of instrumental knowledge in LLMs and situate this knowledge rel-
ative to worldly knowledge as characterized using world models.

Instrumental knowledge
How can we characterize the instrumental knowledge of LLMs? We can understand the instru-
mental knowledge of an entity in terms of its ability to use an instrument to perform tasks
posed for it across relevant domains. Indeed, a motivating perspective in LLMs is the idea of un-
supervisedmultitask learning [23]. Internet-scale natural language data can be seen as a large
dataset of a multitude of tasks posed in varying ways and forms, consistent with the messiness of
how language is used naturally. For instance, the abbreviation ‘TL;DR’ or a paragraph that starts
with the phrase ‘In summary,…’ might signal a summarization task; nearby or paired sentences
or phrases spanning multiple languages might suggest the task of translation between those lan-
guages. For a model to accurately predict the next word in a sequence, researchers have spec-
ulated that it may be critical for the model to spontaneously infer the task structure from the
preceding context and condition the next-word predictions on that task structure [23]. After the
training of an LLM is over, using next-word generation to infer such task structure from natural
language, and conditioning the activations within the model according to this structure, is a pos-
sible source of instrumental knowledge (Figure 1A,B).

Could inference and use of task structure occur without (or with very little) worldly knowledge? A
setting where this could occur ismachine language translation. Instead of focusing on build-
ing systems that translate through semantic analyzers or any other formal notion of meaning,
most progress in machine translation relies on increasingly sophisticated statistical approaches
[24,25]. It is plausible that LLMs represent a new frontier in this progression of models, one in
which the models infer the task structure of language translation in terms of how words, phrases,
and even paragraphs are emitted within and across pairs of languages, and use this structure to
translate – without necessarily representing worldly knowledge or rendering it in different lan-
guages. Such a possibility is further suggested by ‘relational’ theories of word meaning (e.g., a
conceptual role semantics where themeaning of a word or phrase is defined directly by its relation
to other words or concepts and only indirectly through reference and causal connections to the
nonlinguistic world, with limited transmission of worldly content) [26].
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 3
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Box 1. Evidence for world models in cognition

We review evidence for the role of world models in cognition across three domains. First, in intuitive physics, several computational studies characterized mental rep-
resentations as being functionally similar to physics engines of computer graphics (Figure I, top), including a small set of object properties (e.g., shape, mass, stiffness)
and a set of simulation rules (often in the form of partial differential equations) [4,55,57,58]. Critically, more recent work tested elements of this computational proposal in
neural data. Human fMRI experiments provided evidence for functionally localized frontoparietal brain regions for abstract, invariant representations of object mass [59]
and physical stability [60]; electrophysical studies in nonhuman primates provided evidence for continuous inferences about object kinematics and rapid forward pre-
dictions about behaviorally relevant collision events [61–63].

Second, spatial knowledge, sometimes referred to as a kind of ‘cognitive map’, is another commonly explored domain of worldly knowledge. Representational formats
in terms of Euclidean maps as well as the more qualitative topological relations (e.g., graphs of connected locations with different connectivity patterns) are used to for-
malize spatial knowledge [64,65] (and more broadly knowledge involving relations [66,67]; Figure I, middle). Neural studies provide evidence for the deployment of this
multiplicity of spatial knowledge representations in the human brain (see [5,68] for reviews), localizing Euclidean maps and more graph-like representations across a
network of brain regions including hippocampal, entorhinal, medial–frontal, and occipital regions.

Third, there is model-based planning. A long tradition in cognitive science, neuroscience, and AI formalized how structure-preserving representations can be used for
planning (see [69] for a review). Beyond cognitive maps, which can help to support planning in navigation [70], we highlight the ‘body model theory’ [71], the idea that the
anatomy and circuitry of the somatosensory cortex is designed to compute a morphological model of the body and its kinematics (‘body simulation’). This proposal
constitutes a world model of how our bodies work (Figure I, bottom) and can support complex, contact-rich behaviors [72], the ‘embodiment’ of others’ actions and
plans [73], and behavioral rehearsal and learning in the absence of movement [74,75].

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Example world models:
structure-preserving, behaviorally
efficacious representations. We
define world models as behaviorally
efficacious, structure-preserving
mappings that represent entities and
their relations in the real world. Notice
that the left-hand side of the figure
(‘Represented system’) does not show
a specific input or the right-hand side
(‘Representing system’) a specific
output configuration; rather, the two
sides are the two ends of a
homomorphic mapping between two
sets of many configurations [3]; for
example: objects with physical
properties for intuitive physics (top);
places with navigable spatial relations
as cognitive maps (middle); and agents
with a body morphology and goal-
directed dynamics for ‘embodied’
planning (and social inference; bottom).
Joint probability distributions that
embed world model configurations and
observable inputs (i.e., causal generative
models) help to formalize perceptual and
cognitive tasks [9] (see Figure 3A in main
text).

Trends in Cognitive Sciences
Could inferring and using task structure be reduced to having a grasp of the rules and patterns of
a language? Some have asked whether LLM ‘knowledge’ is merely an ability to follow linguistic
rules and language patterns. In addressing this question, an important distinction concerning
the performance of LLMs is between ‘form’ versus ‘meaning’. As others have rightfully cautioned
[27], an LLM’s ability to generate coherent language should not be taken as evidence of
4 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Figure 1. Exploring the nature of knowledge in large language models (LLMs). (A) LLMs, such as OpenAI’s GPT-4,
show impressive capabilities on a broad range of tasks (and some failures), that collectively suggest questions about the
extent of their worldly knowledge. (GPT-4 was queried ten times on each of these prompts and the most frequent
response – shortened for conciseness – is reported, with the frequency displayed in green if that response is consistent
with the authors’ intuitions and red otherwise. We note that this example is not meant to be a quantitative evaluation;
different prompts might lead to different outcomes.) (B) We suggest that pretrained LLMs acquire instrumental knowledge
that goes beyond formal linguistics competence (i.e., the set of rules and statistical patterns that constitute language) but
is not worldly knowledge. We suggest that this knowledge comes from next-word generation (NWG): accurate
autocompletion leads to inference and use of task structure during the processing of input context (and is perhaps further
strengthened and organized during the fine-tuning of LLMs). Here, the model might infer that the task is to compare the plau-
sibility of different phrases in the prompt, with respect to the (often highly complex) co-occurrence patterns of these phrases.
Such instrumental knowledge might work for comparisons of phrases whose co-occurrence patterns are approximated well
by the model but become increasingly inaccurate for less frequent phrases. (C) We explore how much of this instrumental
knowledge might rely on an underlying account of the entities and processes in the physical world (i.e., worldly knowledge).
In this example, this would include the force-dynamic relations between entities. More generally, in this Opinion, we examine
this perspective using the core cognitive concept of structured world models, a review of recent relevant work, and the notion
of bounded rationality.

Trends in Cognitive Sciences
understanding natural language. (In this Opinion, we relate such understanding to having worldly
knowledge). Similarly, based on the separation observed in the human brain between language
and non-language regions [28,29], researchers have argued [30] that LLMs acquire formal lin-
guistic competence, or knowledge of the rules [30] and statistical regularities [31] of a language,
but not ‘functional linguistic competence’, which includes knowledge of and reference to things
and processes in the social and physical worlds [32]. (In this Opinion, we see functional linguistic
competence as related to worldly knowledge.)

When making this argument, researchers have sometimes drawn a distinction between
pretrained LLMs (on next-word prediction) and LLMs after fine-tuning with supervised or
reinforcement learning objectives on human dialog data (e.g., [21]). When prompted with
examples that seem to require worldly knowledge, some fine-tuned LLMs, including GPT-4,
generate compelling answers [21]. It is of interest to understand how such fine-tuning impacts
knowledge; however, such procedures typically adapt only certain output stages of the
pretrained models, otherwise keeping much of the pretrained weights frozen [33,34]. More-
over, in certain cases, performance similar to that of a fine-tuned model can be obtained with
pretrained LLMs via so-called ‘in-context learning’; in the absence of any parameter updates
in the underlying model, providing a few example input–output pairs in the prompt can lead
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 5
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LLMs to learn new tasks [35]. We see in-context learning as relying on instrumental knowledge
that exceeds ‘formal linguistic competence’ and includes inference of a task structure and con-
ditioning of next-word prediction on that structure (Figure 1A,B).

The leap: from next-word prediction to world models
Beyond inferring task structure, can the instrument of next-word generation also lead to inference
of world models? In other words, could this purely text-related instrument lead to any degree of
worldly knowledge (Figure 1C)?

The ordinary sense of ‘knowing a proposition p’, where p is about the world, includes some de-
gree of worldly content. One interesting way this could occur in an LLM draws on the ability to re-
cover worldly content using compression. In many ways, next-word prediction in LLMs reflects
compression of the vast amounts of text data crawled on the Internet into the many billions of
weights of a deep neural network, which in proportion remains too small to memorize the training
dataii. Indeed, compression and prediction are closely related objectives [36,37].

A lower-dimensional state space factorizing the relevant dimensions of variation of a given domain
and the dependence of these dimensions on each other can be simultaneously used to compress
and predict. Worldmodels are examples of such state spaces, where a small set of variables cap-
tures causal abstractions of the structure of their counterpart physical processes in the real world
(see Figure I in Box 1). A caveat, however, is that compression does not always preserve worldly
content, as when various possible approximations of the statistical regularities in the training text
are not structure-preserving representations.

However, we speculate that it is possible for compression to recover a structure-preserving
mapping of the data-generating process underlying the training data. There are multiple data-
generating processes underlying natural language data that could be the source for this: the
rules and statistical regularities in a language, the tasks that are posed and addressed in natural
language, and, especially relevant to the present context, worldly content involving entities,
physical processes, and situations projected into text by humans perceiving, talking about, and
participating in these situations.

We acknowledge that, at present, to hold that LLMs do or even could recover structure-
preserving abstractions of the world involves a leap of faith. However, as it is often this type of
thesis that motivates attributions of general intelligence to LLMs (e.g., [38]), we turn to available
literature exploring this possibility.

Measured recovery of world models in LLMs under domain-specific settings
World models (i.e., causal abstractions of a represented system with a structure-preserving
representing system [3]) provide a concrete framework to reason about whether and how
LLMs can recover degrees of worldly content that could lead to worldly knowledge. A small num-
ber of recent studies have explored whether a language model trained to predict next-token se-
quence spontaneously approximates the underlying data generating process (i.e., the world
model [39,40]). We consider two lines of work: models trained on specialized, non-language do-
mains and models trained on Internet-scale natural language data.

Models trained on specialized non-language domains
A set of recent studies analyzed models after training them on sequences of word-like tokens but
in specific non-language domains where the unique tokens, as well as how they combine into se-
quences, are constrained by the underlying world model.
6 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx

CellPress logo


Trends in Cognitive Sciences
One example of the recovery of worldly knowledge is presented by Li et al. [40] (Figure 2B). This
study trained a GPT-4-like (but on a much smaller scale) language model to predict legal moves
in the game of Othello – a two-player board game in which players gain more discs by
outflanking the discs of the other player. The world model in this game comprises the state
of the board (for each cell in an 8 × 8 grid, whether it is black, white, or empty) and the set of
rules by which each player changes this state. They randomly simulated this world model cre-
ating a dataset of board-state traces via stochastic, non-strategic decisions for each player.
When they trained a language model, called Othello-GPT, on this dataset, they found that
not only could this model reliably generate legal moves given the prior set of moves, but also
the entire board state could be accurately decoded from the intermediate-layer activations in
the model, with a linear decoder (as established by a follow-up study [41]). Crucially, the au-
thors also showed that intervening on the board state via these decoders causally and appro-
priately impacted the model’s legal move predictions.

A recent study [39], using a toy domain, took a similar approach to suggest that a languagemodel
trained for next-token prediction for program synthesis can recover something about the deeper
semantics of this domain-specific programming language. Finally, a similar conclusion comes
from the domain of computational biology: a recent LLM trained by Meta researchers [42] to pre-
dict masked entries in protein amino acid sequences rendered the coarse 3D structure
(i.e., contact relations between amino acids) of the actual folded protein linearly decodable.

The work by Li et al. [40] engages with the possibility mentioned earlier: that next-token prediction
with a language model can recover structure through the underlying data-generating process. It
suggests that the ‘leap’mentioned in the previous section is a realistic outcome. It is exciting and
of pressing importance for future research to systematically explore this possibility across the di-
mensions of training objectives (e.g., next-token prediction, masked token prediction), network
architectures (e.g., transformer-based language models [43] and RNN-based sequence models
[44,45], as these are the kinds of neural network architectures that underlie themodern LLMs and
traditional neural language models, respectively), and the complexity of world models.
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Using world models to explore the extent of worldly knowledge in large language models (LLMs). (B) Compression and prediction are like the two
sides of a coin, and it is possible that compression can recover the data-generating process. In a domain-specific setting (the board game Othello) with tokenized traces of
randomly generated game states, the work in [40] trained an LLM on next-token prediction. Surprisingly, the intermediate layers of this LLM yielded a linearly decodable full
board state. (C) As we discuss in the text, generalization of this result to actual natural-language-trained LLMs is so far limited.
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That said, we raise three caveats. First, these studies depend on dense sampling of relatively small
domains (more than 1 million training examples for Othello); dataset requirements can quickly grow
for non-toy domains, and whether even the largest Internet-scale language datasets can satisfy
these conditions is unknown. Second, these studies consider settings where the basic building
blocks of the world models are enumerated and assigned unique tokens (e.g., the locations in the
8 × 8 grid and the possible states for each cell in the Othello environment). We suspect this will
not be applicable to many relevant world models and to how they are projected into text by
human language users. Finally, it is possible that the recovered world model in a language model,
based on the objective of next-token prediction, is computationally not the most efficient one.

Models trained on Internet-scale natural language data
This motivates the exploration of the recovery of domain-specific world models in LLMs trained
with natural language data (Figure 2C) [46–48], drawing on recent work in the context of percep-
tual color space [46,47].

The work by Abdou et al. [47] shows that pretrained language models can recover aspects of the
relational structure of the perceptual color space. Using representational similarity analysis, the re-
searchers report statistically significant correlations between the similarity structure of color pairs
with respect to languagemodel embeddings versus Euclidean distances between the same pairs
of colors under a well-established perceptual color space. Another study [46] provides further ev-
idence but with a different approach. The researchers report that LLMs provided with a small
number of in-context examples from a single hue (e.g., red) generalize, more accurately than
chance, to the rest of the color space, indicating that some aspects of the relational structure
of the perceptual color space are readily available in these LLMs.

In a way, these results suggest the possibility of recovering worldly knowledge in LLMs despite
their purely text-based training. However, this needs to be qualified, as the quantitative nature
of the correspondence between the physical spaces and LLM internals is often underwhelming
in these studies (e.g., a correlation value of roughly 0.2 in [47]). We anticipate that this correspon-
dence will increase under better trained, larger models; nevertheless, the fact that this relationship
is weak in a domain like colors is telling; structure-wise, color space is a simple topology
(distances in 3D space) and presumably there is much text in the training corpora that talks
about color. The complexity of typical world models projected to text by human language
users (e.g., spatial structures, intuitive physics) is often far more complex, suggesting that there
is a significant amount of worldly content that still needs to be captured.

Across the settings we reviewed, from Othello-GPT to the case of perceptual color space, LLMs’
knowledge can incorporate varying degrees of worldly knowledge, from linearly mappable to
rather limited correspondence to the underlying data-generating processes. Next, we speculate
on an account of this observed variability, in terms of the complexity of the set of world models
underlying a dataset and the tasks a system needs to perform.

A resource-rational approach
What might determine the degree of worldly knowledge recovered due to next-word generation in
an LLM? We suggest that recent research in cognitive science offers two key dimensions to con-
sider: the distribution of tasks an agent encounters [49] and the granularity or complexity of repre-
sentations needed to accomplish these tasks [50–52] (Figure 3A). The combination of task
distribution and the coarseness (or the overall complexity) of the structure-preserving representa-
tions that this task distribution requires might render the convergence of compression, under
next-word generation, to a structure-preserving representation more or less likely (Figure 3B).
8 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Figure 3. Resource-rational view of worldmodels and instrumental knowledge. (A) A goal-conditionedmapping would
invest fewer resources (e.g., larger ‘error bars’) on the aspects of worldly knowledge not benefiting the task of the agent. Such a
mapping can remain behaviorally efficacious and structure preserving. (B) The extent to which next-word generation may recover
worldly knowledge might follow from the ‘coverage’ of the task distribution relative to the underlying data-generating process and
the granularity or overall complexity of this data-generating process. We expect recovery of worldly knowledge to be more likely
with coarser representations and broader task distributions. The density of the black grids indicates the granularity of the
representation; pink regions indicate the subspace of the representations implicated by the task distribution.
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Worldly knowledge can be computationally costly; some of the mappings illustrated in Box 1 (e.
g., game-engine-style physics simulation, embodied planning), although they are domain spe-
cific, may rival LLMs in the complexity of the computations they involve, as they map to com-
plex causal processes in the physical world. For next-word generation to rely on world
models (or any other stimulus-computable system), there is the additional challenge of inferring
specific configurations of world models from specific input stimulus: going from a sensory mea-
surement to a specific world model configuration, or from a proposition such as balancing a
box on a ball is hard to a model in which this proposition is reflected, is an underdetermined
problem of an intractable nature.

Accordingly, any system with bounded resources (in computation, time, memory), whether it is
an LLM or a human, should take advantage of the efficiencies afforded by the distribution of
tasks in their environments [53]. To see an example where tasks can modulate whether coarser
worldly knowledge would be sufficient, consider the domain of intuitive physics (see Figure I,
top in Box 1): A coarse-grained, qualitative simulation might suffice to predict whether a liquid
will flow toward right or left, while a finer-grained simulation may be necessary to determine de-
tails of its trajectory [54,55]. Figure 3A illustrates another scenario in the context of a navigation-
related task. It is possible that the distribution of tasks an agent encounters may require only
coarse-grained representations; alternatively, it is also possible that these tasks require only
a specific small subset of the world configurations to be inferred, rendering more idiosyncratic
knowledge sufficient.

Instrumental knowledge, inference of task structure, and conditioning of next-word generation on
that, without much worldly knowledge, will likely be a sufficient ‘shortcut’ under a wide range of
task distributions. For instance, even in the Othello-GPT study reviewed earlier, when the
model is trained on a subspace of tasks based on a distribution of strategic gameplays, as
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 9
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Box 2. World models as programmable, mid- or high-level interfaces for safety and alignment

Beyond their role in intelligence, why else should we embrace the use of world models in an AI system? That is, if a system
has instrumental knowledge allowing it to perform a diverse range of tasks accurately, what else should we want?

We want such systems to be safe. That is, we want these AI systems to be deployed in a way that is both truthful and
aligned with ‘human values’ [76]. Existing deep neural networks, including LLMs with their transformer-based neural net-
work architectures, are black-box systems without an explicit, high-level interface to direct program their behavior. The
lack of transparency in how LLMs work, combined with their tendency to produce so-called ‘hallucinations’ – the fre-
quently observed fabrication of situations, events, and persons by these systems in response to reasonable prompts –

has raised concerns in the industry and in larger societal contexts [77,78]. The possibility of unexpected value change in
these systems (e.g., transformative higher-order value change as detailed in [79]) raises questions about how sure we
can be that evolving AI values will remain aligned with human values [76].

World models may help us find a path to safer, truthful, and better aligned AI systems. Why? Because world models, and
more generally domain-specific high-level programming languages, formalize worldly knowledge in structure-preserving,
interpretable representations, and they can readily enable truthfulness by supporting an engineer or a user who wishes
to impart their ‘values’ and safety measures as explicit constraints over the system. These features can be exploited via
hybrid pipelines of LLMs and world models [80,81]iii, by neuro-symbolic architectures [82], and by the creation of natively
programmable neural network architectures [83,84].

Trends in Cognitive Sciences

Outstanding questions
How can we formalize instrumental
knowledge? One possibility is task-
conditioned world models, which
needs further development. Future
work shouldalso explore the relationship
of instrumental knowledge to amortized
inference or data-driven proposals in
Bayesian inference and resource-
rational solutions to intractable problems
arising from work with expressive world
models.

Under what conditions – with respect
to the underlying data-generating pro-
cess, actual training data, and model
architecture – does next-word predic-
tion lead to approximate recovery of
world models?

What is the impact of fine-tuning on an
LLM’s instrumental knowledge and re-
covery of worldly knowledge?

How can we create diagnostic,
domain-specific benchmarks to as-
sess the extent and nature of worldly
knowledge in LLMs? These bench-
marks should explore dimensions
such as world model granularity and
the training data distribution.

To what extent can the distinction of
instrumental knowledge versus worldly
knowledge help toward the building
and exploration of new foundation
models in language and beyond, such
as computer vision and reinforcement
learning? (LLMs are often referred to
as ‘foundation models’, in the sense of
their adaptability to new tasks with little
additional data.)

What is the format of the formal
linguistic competence internalized by
LLMs, specifically in relation to
linguistic theories?

How does our discussion relate to
existing treatments of LLMs in related
contexts, including conceptual role
semantics and embodiment-based
arguments?

How can we incorporate structured
world models in AI, such as LLMs
and beyond, for safer and better
aligned systems?
opposed to a dataset of randomly unfolding legal game states, the decodability of the game state
from the neural network activations (even with nonlinear decoders) is dramatically reduced. Sim-
ilarly, for the natural language settings discussed (e.g., color space), typical next-word generation
queries constrain what knowledge an LLM arrives at.

It is only recently that the field of cognitive science has started exploring computational theories
that examine structured world models with task demands (Figure 3A). For example, recent
work provides computational-level explanations of simplified representations relative to
navigation-related objectives, using the domain of 2Dmaze navigation [52] and 3D scene percep-
tion [56]. This new landscape of resource-rational world models could in turn help to refine what
we take knowledge in LLMs and humans to be.

Concluding remarks
The impressive performance of LLMs on a surprisingly broad range of tasks challenges how we
think about the acquisition of knowledge, the relationship between instrumental knowledge and
worldly knowledge, and, by extension, how intelligence could arise in artificial or machine sys-
tems. To frame this challenge, we asked: in what sense can LLMs, trained purely on text, primarily
to predict the next word, be said to have knowledge? We answered the challenge by granting
‘instrumental knowledge’ to LLMs: knowledge defined by a set of (sufficiently sophisticated) abili-
ties to use next-word generation as an instrument, including spontaneous inference and use of
task structure. We then asked how such knowledge is related to the more ordinary, ‘worldly’
knowledge that people exhibit, and explored the degree to which LLM knowledge could incorpo-
rate world models. We also suggested two resource-rational frameworks from cognitive science –
inference networks and goal-conditioned world models – as promising formalisms for how instru-
mental and worldly knowledge can overlap or interface. We close by noting that, beyond their
implication for intelligence, world models, incorporated more explicitly in AI systems, will facilitate
a more direct path to safe and aligned deployment by exposing an interpretable mid- or high-
level interface for control and intervention (Box 2; see Outstanding questions).
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